skip to main content


Search for: All records

Creators/Authors contains: "Bonga, Béatrice"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract There seems to exist agreement about the fact that inflation squeezes the quantum state of cosmological perturbations and entangles modes with wavenumbers k⟶ and - k⟶ . Paradoxically, this result has been used to justify both the classicality as well as the quantumness of the primordial perturbations at the end of inflation. We reexamine this question and point out that the definition of two-mode squeezing of the modes k⟶ and - k⟶ used in previous work rests on choices that are only justified for systems with time-independent Hamiltonians and finitely many degrees of freedom. We argue that for quantum fields propagating on generic time-dependent Friedmann-Lemaître-Robertson-Walker backgrounds, the notion of squeezed states is subject to ambiguities, which go hand in hand with the ambiguity in the definition of particles. In other words, we argue that the question “does the cosmic expansion squeeze and entangle modes with wavenumbers k⟶ and - k⟶ ?” contains the same ambiguity as the question “does the cosmic expansion create particles?”. When additional symmetries are present, like in the (quasi) de Sitter-like spacetimes used in inflationary models, one can resolve the ambiguities, and we find that the answer to the question in the title turns out to be in the negative. We further argue that this fact does not make the state of cosmological perturbations any less quantum, at least when deviations from Gaussianity can be neglected. 
    more » « less
  2. null (Ed.)